Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Phys Med Biol ; 69(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38091616

ABSTRACT

Objective. In this multicentric collaborative study, we aimed to verify whether the selected radiation detectors satisfy the requirements of TRS-483 Code of Practice for relative small field dosimetry in megavoltage photon beams used in radiotherapy, by investigating four dosimetric characteristics. Furthermore, we intended to analyze and complement the recommendations given in TRS-483.Approach. Short-term stability, dose linearity, dose-rate dependence, and leakage were determined for 17 models of detectors considered suitable for small field dosimetry. Altogether, 47 detectors were used in this study across ten institutions. Photon beams with 6 and 10 MV, with and without flattening filters, generated by Elekta Versa HDTMor Varian TrueBeamTMlinear accelerators, were used.Main results. The tolerance level of 0.1% for stability was fulfilled by 70% of the data points. For the determination of dose linearity, two methods were considered. Results from the use of a stricter method show that the guideline of 0.1% for dose linearity is not attainable for most of the detectors used in the study. Following the second approach (squared Pearson's correlation coefficientr2), it was found that 100% of the data fulfill the criteriar2> 0.999 (0.1% guideline for tolerance). Less than 50% of all data points satisfied the published tolerance of 0.1% for dose-rate dependence. Almost all data points (98.2%) satisfied the 0.1% criterion for leakage.Significance. For short-term stability (repeatability), it was found that the 0.1% guideline could not be met. Therefore, a less rigorous criterion of 0.25% is proposed. For dose linearity, our recommendation is to adopt a simple and clear methodology and to define an achievable tolerance based on the experimental data. For dose-rate dependence, a realistic criterion of 1% is proposed instead of the present 0.1%. Agreement was found with published guidelines for background signal (leakage).


Subject(s)
Particle Accelerators , Radiometry , Radiometry/methods , Photons
2.
Radiother Oncol ; 186: 109775, 2023 09.
Article in English | MEDLINE | ID: mdl-37385376

ABSTRACT

PURPOSE: To demonstrate the feasibility of characterising MLCs and MLC models implemented in TPSs using a common set of dynamic beams. MATERIALS AND METHODS: A set of tests containing synchronous (SG) and asynchronous sweeping gaps (aSG) was distributed among twenty-five participating centres. Doses were measured with a Farmer-type ion chamber and computed in TPSs, which provided a dosimetric characterisation of the leaf tip, tongue-and-groove, and MLC transmission of each MLC, as well as an assessment of the MLC model in each TPS. Five MLC types and four TPSs were evaluated, covering the most frequent combinations used in radiotherapy departments. RESULTS: Measured differences within each MLC type were minimal, while large differences were found between MLC models implemented in clinical TPSs. This resulted in some concerning discrepancies, especially for the HD120 and Agility MLCs, for which differences between measured and calculated doses for some MLC-TPS combinations exceeded 10%. These large differences were particularly evident for small gap sizes (5 and 10 mm), as well as for larger gaps in the presence of tongue-and-groove effects. A much better agreement was found for the Millennium120 and Halcyon MLCs, differences being within ± 5% and ± 2.5%, respectively. CONCLUSIONS: The feasibility of using a common set of tests to assess MLC models in TPSs was demonstrated. Measurements within MLC types were very similar, but TPS dose calculations showed large variations. Standardisation of the MLC configuration in TPSs is necessary. The proposed procedure can be readily applied in radiotherapy departments and can be a valuable tool in IMRT and credentialing audits.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods
3.
Article in English | MEDLINE | ID: mdl-36247369

ABSTRACT

Introduction: During the COVID-19 pandemic the ESTRO School who provides international non-profit postgraduate education in Radiation Oncology and related disciplines, including Medical Physics and Radiation Technology, had to close down all live educational activities and turn online, although having only limited experience. The paper describes the experience, discusses the limitations and benefits of online education and suggests directions for the future. Materials and methods: Data about format and feedback from attendees and faculty members from the course activities held in 2019, 2020 and 2021 were made available from the ESTRO School. Results: In 2020, all but two out of thirty live courses that happened before the lockdown were canceled. Among the 18 courses scheduled in the second half of the year, seven went online with a short notice. Each course planned their activities quite differently, from compressed courses with consecutive full days online program to courses over several weeks with a few hours online a week. Both numbers of participants and different nationalities were higher than live courses in 2019 for the seven courses happening online, and courses were well evaluated by participants and faculties. Roughly-one-third of participants would prefer online courses in the future. Discussion: Although online education was well received by the majority, pros and cons exist and especially the personal discussions and networking were missed. Online education and live education are not comparable but can complement each other. Careful balancing these activities in the future is important and strategies for online andragogy are needed.

4.
Phys Imaging Radiat Oncol ; 19: 25-32, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34179522

ABSTRACT

BACKGROUND AND PURPOSE: The COVID-19 pandemic has imposed changes in radiotherapy (RT) departments worldwide. Medical physicists (MPs) are key healthcare professionals in maintaining safe and effective RT. This study reports on MPs experience during the first pandemic peak and explores the consequences on their work. METHODS: A 39-question survey on changes in departmental and clinical practice and on the impact for the future was sent to the global MP community. A total of 433 responses were analysed by professional role and by country clustered on the daily infection numbers. RESULTS: The impact of COVID-19 was bigger in countries with high daily infection rate. The majority of MPs worked in alternation at home/on-site. Among practice changes, implementation and/or increased use of hypofractionation was the most common (47% of the respondents). Sixteen percent of respondents modified patient-specific quality assurance (QA), 21% reduced machine QA, and 25% moved machine QA to weekends/evenings. The perception of trust in leadership and team unity was reversed between management MPs (towards increased trust and unity) and clinical MPs (towards a decrease). Changes such as home-working and increased use of hypofractionation were welcomed. However, some MPs were concerned about pressure to keep negative changes (e.g. weekend work). CONCLUSION: COVID-19 affected MPs through changes in practice and QA procedures but also in terms of trust in leadership and team unity. Some changes were welcomed but others caused worries for the future. This report forms the basis, from a medical physics perspective, to evaluate long-lasting changes within a multi-disciplinary setting.

5.
Diagnostics (Basel) ; 10(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212793

ABSTRACT

A commercial deep learning (DL)-based automated segmentation tool (AST) for computed tomography (CT) is evaluated for accuracy and efficiency gain within prostate cancer patients. Thirty patients from six clinics were reviewed with manual- (MC), automated- (AC) and automated and edited (AEC) contouring methods. In the AEC group, created contours (prostate, seminal vesicles, bladder, rectum, femoral heads and penile bulb) were edited, whereas the MC group included empty datasets for MC. In one clinic, lymph node CTV delineations were evaluated for interobserver variability. Compared to MC, the mean time saved using the AST was 12 min for the whole data set (46%) and 12 min for the lymph node CTV (60%), respectively. The delineation consistency between MC and AEC groups according to the Dice similarity coefficient (DSC) improved from 0.78 to 0.94 for the whole data set and from 0.76 to 0.91 for the lymph nodes. The mean DSCs between MC and AC for all six clinics were 0.82 for prostate, 0.72 for seminal vesicles, 0.93 for bladder, 0.84 for rectum, 0.69 for femoral heads and 0.51 for penile bulb. This study proves that using a general DL-based AST for CT images saves time and improves consistency.

6.
Med Phys ; 47(1): 242-259, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31677278

ABSTRACT

PURPOSE: The goal of the present work was to provide a large set of detector-specific output correction factors for seven small volume ionization chambers on two linear accelerators in four megavoltage photon beams utilizing perpendicular and parallel orientation of ionization chambers in the beam for nominal field sizes ranging from 0.5 cm2  × 0.5 cm2 to 10 cm2  × 10 cm2 . The present study is the second part of an extensive research conducted by our group. METHODS: Output correction factors k Q clin , Q ref f clin , f ref were experimentally determined on two linacs, Elekta Versa HD and Varian TrueBeam for 6 and 10 MV beams with and without flattening filter for nine square fields ranging from 0.5 cm2  × 0.5 cm2 to 10 cm2  × 10 cm2 , for seven mini and micro ionization chambers, IBA CC04, IBA Razor, PTW 31016 3D PinPoint, PTW 31021 3D Semiflex, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16. An Exradin W1 plastic scintillator and EBT3 radiochromic films were used as the reference detectors. RESULTS: For all ionization chambers, values of output correction factors k Q clin , Q ref f clin , f ref were lower for parallel orientation compared to those obtained in the perpendicular orientation. Five ionization chambers from our study set, IBA Razor, PTW 31016 3D PinPoint, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16, fulfill the requirement recommended in the TRS-483 Code of Practice, that is, 0.95 < k Q clin , Q ref f clin , f ref < 1.05 , down to the field size 0.8 cm2  × 0.8 cm2 , when they are positioned in parallel orientation; two of the ionization chambers, IBA Razor and PTW 31023 PinPoint, satisfy this condition down to the field size of 0.5 cm2  × 0.5 cm2 . CONCLUSIONS: The present paper provides experimental results of detector-specific output correction factors for seven small volume ionization chambers. Output correction factors were determined in 6 and 10 MV photon beams with and without flattening filter down to the square field size of 0.5 cm2  × 0.5 cm2 for two orientations of ionization chambers - perpendicular and parallel. Our main finding is that output correction factors are smaller if they are determined in a parallel orientation compared to those obtained in a perpendicular orientation for all ionization chambers regardless of the photon beam energy, filtration, or linear accelerator being used. Based on our findings, we recommend using ionization chambers in parallel orientation, to minimize corrections in the experimental determination of field output factors. Latter holds even for field sizes below 1.0 cm2  × 1.0 cm2 , whenever necessary corrections remain within 5%, which was the case for several ionization chambers from our set. TRS-483 recommended perpendicular orientation of ionization chambers for the determination of field output factors. The present study presents results for both perpendicular and parallel orientation of ionization chambers. When validated by other researchers, the present results for parallel orientation can be considered as a complementary dataset to those given in TRS-483.


Subject(s)
Photons , Radiometry/instrumentation , Uncertainty
7.
Acta Oncol ; 59(2): 141-148, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31746249

ABSTRACT

Background: The IAEA has developed and tested an on-site, end-to-end IMRT/VMAT dosimetry audit methodology for head and neck cases using an anthropomorphic phantom. The audit methodology is described, and the results of the international pilot testing are presented.Material and methods: The audit utilizes a specially designed, commercially available anthropomorphic phantom capable of accommodating a small volume ion chamber (IC) in four locations (three in planning target volumes (PTVs) and one in an organ at risk (OAR)) and a Gafchromic film in a coronal plane for the absorbed dose to water and two-dimensional dose distribution measurements, respectively. The audit consists of a pre-visit and on-site phases. The pre-visit phase is carried out remotely and includes a treatment planning task and a set of computational exercises. The on-site phase aims at comparing the treatment planning system (TPS) calculations with measurements in the anthropomorphic phantom following an end-to-end approach. Two main aspects were tested in the pilot study: feasibility of the planning constraints and the accuracy of IC and film results in comparison with TPS calculations. Treatment plan quality was scored from 0 to 100.Results: Forty-two treatment plans were submitted by 14 institutions from 10 countries, with 79% of them having a plan quality score over 90. Seventeen sets of IC measurement results were collected, and the average measured to calculated dose ratio was 0.988 ± 0.016 for PTVs and 1.020 ± 0.029 for OAR. For 13 film measurement results, the average gamma passing rate was 94.1% using criteria of 3%/3 mm, 20% threshold and global gamma.Conclusions: The audit methodology was proved to be feasible and ready to be adopted by national dosimetry audit networks for local implementation.


Subject(s)
Medical Audit/methods , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Feasibility Studies , Head and Neck Neoplasms/radiotherapy , Humans , International Agencies , Medical Audit/standards , Phantoms, Imaging , Pilot Projects , Quality Assurance, Health Care , Radiometry/instrumentation , Radiotherapy Dosage
8.
Phys Med ; 65: 128-136, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31450123

ABSTRACT

PURPOSE: The IAEA newly developed "end-to-end" audit methodology for on-site verification of IMRT dose delivery has been carried out in Portugal in 2018. The main goal was to evaluate the physical aspects of the head and neck (H&N) cancer IMRT treatments. This paper presents the national results. METHODS: All institutions performing IMRT treatments in Portugal, 20 out of 24, have voluntarily participated in this audit. Following the adopted methodology, a Shoulder, Head and Neck End-to-End phantom (SHANE) - that mimics an H&N region, underwent all steps of an IMRT treatment, according to the local practices. The measurements using an ionization chamber placed inside the SHANE phantom at four reference locations (three in PTVs and one in the spinal cord) and an EBT3 film positioned in a coronal plane were compared with calculated doses. FilmQA Pro software was used for film analysis. RESULTS: For ionization chamber measurements, the percent difference was within the specified tolerances of ±5% for PTVs and ±7% for the spinal cord in all participating institutions. Considering film analysis, gamma passing rates were on average 96.9%±2.9% for a criterion of 3%/3 mm, 20% threshold, all above the acceptance limit of 90%. CONCLUSIONS: The national results of the H&N IMRT audit showed a compliance between the planned and the delivered doses within the specified tolerances, confirming no major reasons for concern. At the same time the audit identified factors that contributed to increased uncertainties in the IMRT dose delivery in some institutions resulting in recommendations for quality improvement.


Subject(s)
Clinical Audit , Radiotherapy, Intensity-Modulated/standards , Phantoms, Imaging , Portugal , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed
9.
Med Phys ; 46(2): 944-963, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30521073

ABSTRACT

PURPOSE: The goal of this work is to provide a large and consistent set of data for detector-specific output correction factors, k Q clin , Q ref f clin , f ref , for small static fields for seven solid-state detectors and to determine field output factors, Ω Q clin , Q ref f clin , f ref , using EBT3 radiochromic films and W1 plastic scintillator as reference detectors on two different linear accelerators and four megavoltage photon beams. Consistent measurement conditions and recommendations given in the International Code of Practice TRS-483 for small-field dosimetry were followed throughout the study. METHODS: Ω Q clin , Q ref f clin , f ref were determined on two linacs, Elekta Versa HD and Varian TrueBeam, for 6 and 10 MV beams with and without flattening filter and for nine fields ranging from 0.5 × 0.5 cm2 to 10 × 10 cm2 . Signal readings obtained with EBT3 radiochromic films and W1 plastic scintillator were fitted by an analytical function. Volume averaging correction factors, determined from two-dimensional (2D) dose matrices obtained with EBT3 films and fitted to bivariate Gaussian function, were used to correct measured signals. k Q clin , Q ref f clin , f ref were determined empirically for six diodes, IBA SFD, IBA Razor, PTW 60008 P, PTW 60012 E, PTW 60018 SRS, and SN EDGE, and a PTW 60019 microDiamond detector. RESULTS: Field output factors and detector-specific k Q clin , Q ref f clin , f ref are presented in the form of analytical functions as well as in the form of discrete values. It is found that in general, for a given linac, small-field output factors need to be determined for every combination of beam energy and filtration (WFF or FFF) and field size as the differences between them can be statistically significant (P < 0.05). For different beam energies, the present data for k Q clin , Q ref f clin , f ref are found to differ significantly (P < 0.05) from the corresponding data published in TRS-483 mostly for the smallest fields (<1.5 cm). For the PTW microDiamond detector, statistically significant differences (P < 0.05) between k Q clin , Q ref f clin , f ref values were found for all investigated beams on an Elekta Versa HD linac for field sizes 0.5 × 0.5 cm2 and 0.8 × 0.8 cm2 . Significant differences in k Q clin , Q ref f clin , f ref between beams of a given energy but with and without flattening filters are found for measurements made in small fields (<1.5 cm) at a given linac. Differences in k Q clin , Q ref f clin , f ref are also found when measurements are made at different linacs using the same beam energy filtration combination; for the PTW microDiamond detector, these differences were found to be around 6% and were considered as significant. CONCLUSIONS: Selection of two reference detectors, EBT3 films and W1 plastic scintillator, and use of an analytical function, is a novel approach for the determination of Ω Q clin , Q ref f clin , f ref for small static fields in megavoltage photon beams. Large set of k Q clin , Q ref f clin , f ref data for seven solid-state detectors and four beam energies determined on two linacs by a single group of researchers can be considered a valuable supplement to the literature and the TRS-483 dataset.


Subject(s)
Monte Carlo Method , Particle Accelerators/instrumentation , Phantoms, Imaging , Photons , Radiometry/instrumentation , Algorithms , Computer Simulation , Data Interpretation, Statistical , Humans , Radiation Dosage
10.
Radiol Oncol ; 50(1): 64-72, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-27069451

ABSTRACT

BACKGROUND: Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014), and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014). Also the International Atomic Energy Agency (IAEA) has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013) and the International Basic Safety Standards, General Safety Requirements Part 3 (2014). The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics. CONCLUSIONS: Published recommendations of IAEA Regional Meeting on Medical Physics in Europe shall be followed and enforced in all European states. Appropriate qualification framework including education, clinical specialization, certification and registration of medical physicists shall be established and international recommendation regarding staffing levels in the field of medical physics shall be fulfilled in particular. European states have clear legal and moral responsibility to effectively transpose Basic Safety Standards into national legislation in order to ensure high quality and safety in patient healthcare.

11.
Acta Oncol ; 53(5): 628-36, 2014 May.
Article in English | MEDLINE | ID: mdl-24164104

ABSTRACT

BACKGROUND AND PURPOSE: One of the newer audit modalities operated by the International Atomic Energy Agency (IAEA) involves audits of treatment planning systems (TPS) in radiotherapy. The main focus of the audit is the dosimetry verification of the delivery of a radiation treatment plan for three-dimensional (3D) conformal radiotherapy using high energy photon beams. The audit has been carried out in eight European countries - Estonia, Hungary, Latvia, Lithuania, Serbia, Slovakia, Poland and Portugal. The corresponding results are presented. MATERIAL AND METHODS: The TPS audit reviews the dosimetry, treatment planning and radiotherapy delivery processes using the 'end-to-end' approach, i.e. following the pathway similar to that of the patient, through imaging, treatment planning and dose delivery. The audit is implemented at the national level with IAEA assistance. The national counterparts conduct the TPS audit at local radiotherapy centres through on-site visits. TPS calculated doses are compared with ion chamber measurements performed in an anthropomorphic phantom for eight test cases per algorithm/beam. A set of pre-defined agreement criteria is used to analyse the performance of TPSs. RESULTS: TPS audit was carried out in 60 radiotherapy centres. In total, 190 data sets (combination of algorithm and beam quality) have been collected and reviewed. Dosimetry problems requiring interventions were discovered in about 10% of datasets. In addition, suboptimal beam modelling in TPSs was discovered in a number of cases. CONCLUSIONS: The TPS audit project using the IAEA methodology has verified the treatment planning system calculations for 3D conformal radiotherapy in a group of radiotherapy centres in Europe. It contributed to achieving better understanding of the performance of TPSs and helped to resolve issues related to imaging, dosimetry and treatment planning.


Subject(s)
Quality Assurance, Health Care , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Conformal/standards , Europe , Humans , International Agencies , Medical Audit
12.
Eur Radiol ; 23(3): 623-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22940731

ABSTRACT

OBJECTIVE: To survey procedures and protocols in paediatric computed tomography (CT) in 40 less resourced countries. METHODS: Under a project of the International Atomic Energy Agency, 146 CT facilities in 40 countries of Africa, Asia, Europe and Latin America responded to an electronic survey of CT technology, exposure parameters, CT protocols and doses. RESULTS: Modern MDCT systems are available in 77 % of the facilities surveyed with dedicated paediatric CT protocols available in 94 %. However, protocols for some age groups were unavailable in around 50 % of the facilities surveyed. Indication-based protocols were used in 57 % of facilities. Estimates of radiation dose using CTDI or DLP from standard CT protocols demonstrated wide variation up to a factor of 100. CTDI(vol) values for the head and chest were between two and five times those for an adult at some sites. Sedation and use of shielding were frequently reported; immobilisation was not. Records of exposure factors were kept at 49 % of sites. CONCLUSION: There is significant potential for improvement in CT practice and protocol use for children in less resourced countries. Dose estimates for young children varied widely. This survey provides critical baseline data for ongoing quality improvement efforts by the IAEA.


Subject(s)
Health Services Accessibility/statistics & numerical data , Pediatrics/statistics & numerical data , Practice Patterns, Physicians'/statistics & numerical data , Radiation Protection/statistics & numerical data , Tomography, X-Ray Computed/statistics & numerical data , Africa/epidemiology , Asia/epidemiology , Europe/epidemiology , Health Care Surveys , Humans , Latin America/epidemiology , Radiation Dosage
13.
Radiat Oncol ; 7: 155, 2012 Sep 12.
Article in English | MEDLINE | ID: mdl-22971539

ABSTRACT

BACKGROUND: Independent external audits play an important role in quality assurance programme in radiation oncology. The audit supported by the IAEA in Serbia was designed to review the whole chain of activities in 3D conformal radiotherapy (3D-CRT) workflow, from patient data acquisition to treatment planning and dose delivery. The audit was based on the IAEA recommendations and focused on dosimetry part of the treatment planning and delivery processes. METHODS: The audit was conducted in three radiotherapy departments of Serbia. An anthropomorphic phantom was scanned with a computed tomography unit (CT) and treatment plans for eight different test cases involving various beam configurations suggested by the IAEA were prepared on local treatment planning systems (TPSs). The phantom was irradiated following the treatment plans for these test cases and doses in specific points were measured with an ionization chamber. The differences between the measured and calculated doses were reported. RESULTS: The measurements were conducted for different photon beam energies and TPS calculation algorithms. The deviation between the measured and calculated values for all test cases made with advanced algorithms were within the agreement criteria, while the larger deviations were observed for simpler algorithms. The number of measurements with results outside the agreement criteria increased with the increase of the beam energy and decreased with TPS calculation algorithm sophistication. Also, a few errors in the basic dosimetry data in TPS were detected and corrected. CONCLUSIONS: The audit helped the users to better understand the operational features and limitations of their TPSs and resulted in increased confidence in dose calculation accuracy using TPSs. The audit results indicated the shortcomings of simpler algorithms for the test cases performed and, therefore the transition to more advanced algorithms is highly desirable.


Subject(s)
Algorithms , Clinical Audit , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Calibration , Carcinoma/radiotherapy , Humans , Lung Neoplasms/radiotherapy , Multicenter Studies as Topic , Phantoms, Imaging/standards , Radiometry/methods , Radiometry/standards , Radiotherapy Dosage/standards , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Conformal/methods , Radiotherapy, Conformal/standards , Serbia
14.
AJR Am J Roentgenol ; 198(5): 1021-31, 2012 May.
Article in English | MEDLINE | ID: mdl-22528891

ABSTRACT

OBJECTIVE: The purpose of this study was to assess the frequency of pediatric CT in 40 less-resourced countries and to determine the level of appropriateness in CT use. MATERIALS AND METHODS: Data on the increase in the number of CT examinations during 2007 and 2009 and appropriate use of CT examinations were collected, using standard forms, from 146 CT facilities at 126 hospitals. RESULTS: The lowest frequency of pediatric CT examinations in 2009 was in European facilities (4.3%), and frequencies in Asia (12.2%) and Africa (7.8%) were twice as high. Head CT is the most common CT examination in children, amounting to nearly 75% of all pediatric CT examinations. Although regulations in many countries assign radiologists with the main responsibility of deciding whether a radiologic examination should be performed, in fact, radiologists alone were responsible for only 6.3% of situations. Written referral guidelines for imaging were not available in almost one half of the CT facilities. Appropriateness criteria for CT examinations in children did not always follow guidelines set by agencies, in particular, for patients with accidental head trauma, infants with congenital torticollis, children with possible ventriculoperitoneal shunt malfunction, and young children (< 5 years old) with acute sinusitis. In about one third of situations, nonavailability of previous images and records on previously received patient doses have the potential to lead to unnecessary examinations and radiation doses. CONCLUSION: With increasing use of CT in children and a lack of use of appropriateness criteria, there is a strong need to implement guidelines to avoid unnecessary radiation doses to children.


Subject(s)
Practice Patterns, Physicians'/statistics & numerical data , Tomography, X-Ray Computed/statistics & numerical data , Africa , Asia , Child , Child, Preschool , Europe , Humans , Infant , Infant, Newborn , International Agencies , Latin America , Radiation Dosage , Radiation Protection , Surveys and Questionnaires
15.
Radiother Oncol ; 89(3): 338-46, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18701178

ABSTRACT

BACKGROUND AND PURPOSE: The methodology developed by IAEA for dosimetric quality control of treatment planning systems has been tested in different hospitals through a pilot study. The aim was to verify the methodology and observe the range of deviations between planned and delivered doses in 3D conformal radiotherapy in situations close to a clinical setting. MATERIAL AND METHODS: The methodology was based on an anthropomorphic phantom representing the human thorax, and simulates the whole chain of external beam radiotherapy treatment planning activities. The phantom was scanned using computed tomography and eight test cases were planned on treatment planning systems which imitate different irradiation geometries found in conformal radiotherapy. The doses were measured with ion chambers, and the deviation between measured and treatment planning system calculated doses was reported. This methodology, which employs the same phantom and the same set of test cases, was tested in 17 different hospitals which were using 14 different algorithms/inhomogeneity correction methods implemented in different treatment planning systems. RESULTS: A total of 53 clinical test case datasets for different energies and calculation algorithms were produced. Most of the systems with advanced algorithms complied with predefined agreement criteria. Dose differences more than 20% were discovered for some of the simple algorithms and high energy X-ray beams. The number of deviations outside agreement criteria increases with the beam energy and decreases with advancement of the treatment planning system calculation algorithm. CONCLUSIONS: Large deviations exist in some simple dose calculation algorithms, therefore more advanced algorithms would be preferable and therefore should be implemented in clinical practice. The test cases that could be performed in reasonable time would help the users to appreciate the possibilities of their system and understand its limitations.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Algorithms , Humans , Phantoms, Imaging , Pilot Projects , Quality Control , Radiotherapy, Conformal , Thorax/radiation effects
16.
Strahlenther Onkol ; 181(3): 172-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15756521

ABSTRACT

PURPOSE: To investigate the dose distribution in active bone marrow of patients undergoing intensity-modulated radiotherapy (IMRT) for prostate cancer and compare it to the distribution in the same patients, if they had been treated using conformal plans, in order to develop criteria for optimization to minimize the estimated risk of secondary leukemia. PATIENTS AND METHODS: Mean bone marrow doses were calculated for ten patients with localized prostate cancer who underwent whole-pelvis IMRT and compared to three-dimensional conformal (3-D CRT) plans prepared for the same patients. Also for comparison, the IMRT and 3-D CRT plans were produced to simulate the treatment of the prostate gland only. To measure the dose to extrapelvic bone marrow, three thermoluminescent diode (TLD) chips were placed in the middle of the sternum region inside the Rando phantom. RESULTS: For both the pelvic and prostate-only volumes, the IMRT plans were superior to 3-D CRT plans in reducing the high dose volume to the rectum, the bladder and the small bowel while maintaining acceptable coverage of the planning target volume (PTV). For the pelvic treatment group the IMRT plans, compared to 3-D CRT, reduced the high dose volume (> 20 Gy) to os coxae, which is the main contributor of dose to pelvic bone marrow, but increased the middle dose volume (10-20 Gy). No statistically significant differences were observed for lower dose volumes (< 5 Gy). For the prostate-only treatment the IMRT plan increased the high dose volume and slightly decreased the low dose volume of pelvic bone marrow. However, for both treatments the leakage dose to extrapelvic sites was higher by a factor of 2 in IMRT plans. CONCLUSION: There are significant differences in the dose-volume histograms of bone marrow doses from 3-D CRT and from IMRT. Pronounced dose inhomogeneity reduces the risk of leukemia compared to homogeneous radiation exposure of the bone marrow. The mean bone marrow dose is therefore not a useful criterion to judge plan quality, since scattered low doses to distant sites may be more critical than the high dose volumes receiving > 10 Gy. The number of monitor units needed to deliver an IMRT plan affects leakage dose and their incorporation into planning constraints should be considered.


Subject(s)
Bone Marrow/radiation effects , Prostatic Neoplasms/radiotherapy , Bone Marrow/pathology , Humans , Male , Prostatic Neoplasms/pathology , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal
17.
Strahlenther Onkol ; 178(1): 36-42, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11977390

ABSTRACT

BACKGROUND AND PURPOSE: Radiotherapy plays an important role in the management of prostate cancer. Epidemiological data indicate a small but significant risk of radiation-induced leukemia after radiotherapy which might be related to the high mean bone marrow dose associated with radiotherapy of prostate cancer. The purpose of the study was to investigate the relation between the mean bone marrow dose and unstable chromosome aberrations in peripheral blood lymphocytes in patients undergoing conformal radiotherapy for prostate cancer as a possible indicator of risk. Endometrial cancer patients were also included for comparison. PATIENTS AND METHODS: Nine patients, six with prostate cancer (60-73 years old) and three with endometrial cancer (61-81 years old) treated with radiotherapy were included in the study. The non-bony spaces inside the pelvic bones were outlined on every CT slice using the treatment planning system and mean doses to the bone marrow calculated. Blood samples of the patients were obtained at different times before, during and at the end of treatment. Lymphocytes were cultured in the usual way and metaphases scored for dicentric aberrations. RESULTS: 46 samples from nine patients were obtained. The mean number of metaphases analyzed per sample was 180 with a range from 52 to 435. The mean bone marrow doses for prostate cancer patients ranged from 2.8 to 4.2 Gy and for endometrial cancer patients from 12.8 to 14.8 Gy. The aberration yield increased with the planning target volume and the mean bone marrow dose. CONCLUSION: The yield of dicentric aberrations for prostate cancer patients correlated closely with the mean bone marrow dose albeit the induction of dicentrics occurred in mature T lymphocytes most of which were probably in transit through the irradiated volumes. Therefore, the observed relationship between dicentrics and mean bone marrow doses are indirect.


Subject(s)
Bone Marrow/radiation effects , Chromosome Aberrations , Lymphocytes/radiation effects , Prostatic Neoplasms/radiotherapy , Adult , Aged , Aged, 80 and over , Brachytherapy , Cells, Cultured , Cytogenetic Analysis , Endometrial Neoplasms/radiotherapy , Female , Humans , Lymphocytes/ultrastructure , Male , Metaphase , Middle Aged , Particle Accelerators , Poisson Distribution , Radiation Dosage , Radiotherapy Dosage , Radiotherapy, Conformal/adverse effects , Risk Factors , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...